If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+14n-18=0
a = 7; b = 14; c = -18;
Δ = b2-4ac
Δ = 142-4·7·(-18)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10\sqrt{7}}{2*7}=\frac{-14-10\sqrt{7}}{14} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10\sqrt{7}}{2*7}=\frac{-14+10\sqrt{7}}{14} $
| 4=2(x | | 15(-3.2+.2y)+8y=18 | | 4x^2-92x+304=0 | | –16t2+16t+4=0 | | 5/24b=25/4 | | -12=-4(-3-6x)+24 | | -3(-x-4)=33 | | 1.3m=-6.5 | | 1+5n-n=7+5n | | -5x(-1x+10)+20=10 | | 4b^2=8b+1 | | 1.055x=60+x | | 100+30x=25x+150 | | 1.4=2/x | | 4x-3=18-3 | | 15x+8Y=18 | | 7(5x+5)=35 | | 4.9x^2+16x-2.1=0 | | 23=12(2z-6) | | 6x+3x=14+7x | | 5+3.50x=3+4x | | -1+3x/2=4 | | 5k^2-80=0 | | 4p^2-16p-48=0 | | 2/5x+2=3/4x+3 | | 7=-3m+34 | | 6/8=2m+3/8 | | 12+x/3=15 | | 7b-4=b | | (25(13^x))-((x^2)(13^x))=0 | | 7a-7=3a-3 | | 11y/14-2=3-7y/2 |